
django-flashpolicies Documentation
Release 1.6

James Bennett

April 19, 2015

Contents

1 Documentation contents 3
1.1 Installation guide . 3
1.2 Views for serving cross-domain policies . 4
1.3 Utilities for generating cross-domain policy files . 5
1.4 Frequently asked questions . 7

Python Module Index 11

i

ii

django-flashpolicies Documentation, Release 1.6

This application enables simple management of Flash cross-domain policies (which are required for Flash content to
access information across domains) for Django-powered sites. Cross-domain policies are represented by an XML file
format, and this application generates and serves the appropriate XML.

In the simplest case, you’ll just set up one URL pattern, pointing the URL /crossdomain.xml to the view
flashpolicies.views.simple() and passing a list of domains from which you want to allow access. For ex-
ample, to allow access from Flash content served from media.example.com, you could place the following in the
root URLconf of your Django site (along with the appropriate import statement to make flashpolicies.views
available):

url(r’^crossdomain.xml$’,
flashpolicies.views.simple,
{’domains’: [’media.example.com’]}),

Contents 1

https://www.djangoproject.com/

django-flashpolicies Documentation, Release 1.6

2 Contents

CHAPTER 1

Documentation contents

1.1 Installation guide

Before installing django-flashpolicies, you’ll need to have a copy of Django already installed. For information on
obtaining and installing Django, consult the Django download page, which offers convenient packaged downloads and
installation instructions.

The 1.6 release of django-flashpolicies supports Django 1.7 and 1.8, on any of Python 2.7, 3.3 or 3.4. Older versions
of Django and/or Python may work, but are not tested or officially supported.

1.1.1 Normal installation

The preferred method of installing django-flashpolicies is via pip, the standard Python package-installation tool. If
you don’t have pip, instructions are available for how to obtain and install it.

Once you have pip, simply type:

pip install django-flashpolicies

1.1.2 Manual installation

It’s also possible to install django-flashpolicies manually. To do so, obtain the latest packaged version from the listing
on the Python Package Index. Unpack the .tar.gz file, and run:

python setup.py install

Once you’ve installed django-flashpolicies, you can verify successful installation by opening a Python interpreter and
typing import flashpolicies.

If the installation was successful, you’ll simply get a fresh Python prompt. If you instead see an ImportError,
check the configuration of your install tools and your Python import path to ensure django-flashpolicies installed into
a location Python can import from.

1.1.3 Installing from a source checkout

The development repository for django-flashpolicies is at <https://github.com/ubernostrum/django-
flashpolicies>. Presuming you have git installed, you can obtain a copy of the repository by typing:

3

https://www.djangoproject.com
https://www.djangoproject.com/download/
https://pip.pypa.io/en/latest/installing.html
https://pypi.python.org/pypi/django-flashpolicies/
https://pypi.python.org/pypi/django-flashpolicies/
https://github.com/ubernostrum/django-flashpolicies
https://github.com/ubernostrum/django-flashpolicies
http://git-scm.com/

django-flashpolicies Documentation, Release 1.6

git clone https://github.com/ubernostrum/django-flashpolicies.git

From there, you can use normal git commands to check out the specific revision you want, and install it using python
setup.py install.

1.2 Views for serving cross-domain policies

Included in django-flashpolicies are several views for generating and serving Flash cross-domain policies. Most sites
will need no more than the simple() policy-serving view.

Some of the other views here support more advanced use cases, but note that not all valid policy file options have
direct support in these views. The Policy class does support all valid options, however, so instantiating a Policy,
setting the desired options, and passing it to the serve() view will allow use of any options policy files can support.

flashpolicies.views.serve(request, policy)
Given a Policy instance, serialize it to UTF-8 and serve it. Internally, this is used by all other included views
as the mechanism which actually serves the policy file.

Parameters policy – The Policy to serve.

flashpolicies.views.simple(request, domains)
A simple Flash cross-domain policy.

Note that if this is returned from the URL /crossdomain.xml on a domain, it will act as a master policy
and will not permit other policies to exist on that domain. If you need to set meta-policy information and allow
other policies, use the metapolicy() view for the master policy instead.

Parameters domains – A list of domains from which to allow access. Each value may be either
a domain name (e.g., "example.com") or a wildcard (e.g., "*.example.com"). Due to
serious potential security issues, it is strongly recommended that you not use wildcard domain
values.

flashpolicies.views.metapolicy(request, permitted, domains=None)
A Flash cross-domain policy which allows other policies to exist on the same domain.

Note that this view, if used, must be the master policy for the domain, and so must be served from the URL
/crossdomain.xml on the domain: setting meta-policy information in other policy files is forbidden by the
cross-domain policy specification.

Parameters

• permitted – A string indicating the extent to which other policies are permitted. A set of
constants is available, defining acceptable values for this argument.

• domains – A list of domains from which to allow access. Each value may be either a
domain name (e.g., "example.com") or a wildcard (e.g., "*.example.com"). Due
to serious potential security issues, it is strongly recommended that you not use wildcard
domain values.

flashpolicies.views.no_access(request)
A Flash cross-domain policy which permits no access of any kind, via a meta-policy declaration disallowing all
policy files.

Note that this view, if used, must be the master policy for the domain, and so must be served from the URL
/crossdomain.xml on the domain. Setting meta-policy information in other policy files is forbidden by the
cross-domain policy specification.

4 Chapter 1. Documentation contents

django-flashpolicies Documentation, Release 1.6

Internally, this view simply calls the metapolicy() view, passing SITE_CONTROL_NONE as the meta-
policy.

1.3 Utilities for generating cross-domain policy files

Internally, all policy files generated by django-flashpolicies are represented by instances of
flashpolicies.policies.Policy, which understands how to handle the various permitted options in
policy files and can generate the correct XML. This documentation covers Policy objects and their API, but is
not and should not be taken to be documentation on the format and options for cross-domain policy files; Adobe’s
cross-domain policy specification is the canonical source for that information.

1.3.1 Simple interaction with Policy objects

For most cases, simply instantiating a Policy object with one or more domains will accomplish the desired effect.
The property xml_dom will yield an xml.dom.minidom.Document object representing the policy’s XML; for
information on working with these objects, consult the documentation for the xml.dom.minidom module in the Python
standard library.

1.3.2 Serializing Policy objects

There are two similar but different ways to serialize the underlying XML. One is simply to use str() on a Policy
instance, like so:

>>> from flashpolicies import policies
>>> my_policy = policies.Policy(’media.example.com’, ’api.example.com’)
>>> print(str(my_policy))
<?xml version="1.0" ?>
<!DOCTYPE cross-domain-policy

SYSTEM ’http://www.adobe.com/xml/dtds/cross-domain-policy.dtd’>
<cross-domain-policy>

<allow-access-from domain="media.example.com"/>
<allow-access-from domain="api.example.com"/>

</cross-domain-policy>

The other is to call the serialize() method. The difference between these options is:

1. str() will, as is required by Python’s semantics, produce a result of type str. Which, on Python 3, is a
Unicode string; this means the output is not in any particular encoding, and will omit the encoding declaration
of the XML prolog.

2. serialize() will, on the other hand, always return a sequence of UTF-8-encoded bytes. This is the type
str on Python 2, and the type bytes on Python 3. In accordance with this, the output of serialize() will
include an encoding declaration in its XML prolog.

In general, str() should be used to inspect a Policy for debugging or educational purposes, while serialize()
should be used any time the output will actually be treated as a policy file (i.e., if writing your own policy-serving
view, or if serializing the policy to a file). The built-in serve() view uses serialize().

1.3.3 API reference

class flashpolicies.policies.Policy
Wrapper object for creating and manipulating a Flash cross-domain policy.

1.3. Utilities for generating cross-domain policy files 5

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://docs.python.org/library/xml.dom.minidom.html
http://docs.python.org/library/xml.dom.minidom.html

django-flashpolicies Documentation, Release 1.6

In the simplest case – specifying one or more domains from which to allow access – simply pass the domains
when initializing. For example:

my_policy = Policy(’media.example.com’, ’api.example.com’)

xml_dom
A read-only property which returns an XML representation of this policy, as an
xml.dom.minidom.Document object.

serialize()
Serialize this policy to a UTF-8-encoded byte string (i.e., str on Python 2, bytes on Python 3), suitable
for serving over HTTP or writing to a file.

allow_domain(domain, to_ports=None, secure=True)
Allow access for Flash content served from a particular domain.

Parameters

• domain – The domain from which to allow access. May be either a full domain name (e.g.,
"example.com") or a wildcard (e.g., "example.com"). Due to serious potential
security concerns, it is strongly recommended that you avoid wildcard domain values.

• to_ports – (only for socket policy files) A list of ports the domain will be permitted to
access. Each value in the list may be either a port number (e.g., "80"), a range of ports
(e.g., "80-120") or the wildcard value "*", which will permit all ports.

• secure – If True, will require the security level of the HTTP protocol for Flash content
to match that of this policy file; for example, if the policy file was retrieved via HTTPS,
Flash content from domain must also be retrieved via HTTPS. If False, this matching
of security levels will be disabled. It is strongly recommended that you not disable the
matching of security levels.

allow_headers(domain, headers, secure=True)
Allow Flash content from a particular domain to push data via HTTP headers.

Parameters

• domain – The domain from which to allow access. May be either a full domain name (e.g.,
"example.com") or a wildcard (e.g., "example.com"). Due to serious potential
security concerns, it is strongly recommended that you avoid wildcard domain values.

• headers – A list of HTTP header names in which data may be submitted.

• secure – If True, will require the security level of the HTTP protocol for Flash content
to match that of this policy file; for example, if the policy file was retrieved via HTTPS,
Flash content from domain must also be retrieved via HTTPS. If False, this matching
of security levels will be disabled. It is strongly recommended that you not disable the
matching of security levels.

allow_identity(fingerprint)
Allow access from digitally-signed documents.

Parameters fingerprint – The fingerprint of the signing key to allow.

The XML resulting from use of this method will include both the key fingerprint and the name of an
algorithm used to calculate the fingerprint. At the moment, "sha-1" is the only value defined in the
cross-domain policy specification for the fingerprint-algorithm attribute of the certificate
element (which is the element produced by this method), and so an argument for this is omitted; if addi-
tional algorithms are added to the specification, support will be added in a backwards-compatible fashion
(likely through an argument defaulting to SHA-1).

6 Chapter 1. Documentation contents

django-flashpolicies Documentation, Release 1.6

metapolicy(permitted)
Set metapolicy information (only applicable to master policy files), determining which other policy files
may be used on the same domain.

Parameters permitted – The metapolicy to use. Acceptable values are those listed in the cross-
domain policy specification, and are also available as a set of constants defined in this module.
Passing an invalid value will raise TypeError.

By default, Flash assumes a default metapolicy of "master-only" (except for socket policies, which
assume a default of "all"), so if this is the desired metapolicy (and, for security reasons, it often is), this
method does not need to be called.

Note that a metapolicy of "none" forbids all access, even if one or more domains have previously been
specified as allowed. As such, setting the metapolicy to "none" will remove all access previously
granted by allow_domain() or allow_headers(). Additionally, attempting to grant access via
allow_domain() or allow_headers() will, when the metapolicy is "none", raise TypeError.

1.3.4 Available constants

For ease of working with metapolicies, the following constants are defined, and correspond to the acceptable values
for metapolicies as defined in the cross-domain policy specification.

flashpolicies.policies.SITE_CONTROL_ALL
All policy files available on the current domain are permitted. Actual value is the string "all".

flashpolicies.policies.SITE_CONTROL_BY_CONTENT_TYPE
Only policy files served from the current domain with an HTTP Content-Type of
text/x-cross-domain-policy are permitted. Actual value is the string "by-content-type".

flashpolicies.policies.SITE_CONTROL_BY_FTP_FILENAME
Only policy files served from the current domain as files named crossdomain.xml are permitted. Actual
value is the string "by-ftp-filename".

flashpolicies.policies.SITE_CONTROL_MASTER_ONLY
Only the master policy file for this domain – the policy served from the URL /crossdomain.xml – is
permitted. Actual value is the string "master-only".

flashpolicies.policies.SITE_CONTROL_NONE
No policy files are permitted, including the master policy file. Actual value is the string "none".

flashpolicies.policies.VALID_SITE_CONTROL
A tuple containing the above constants, for convenient validation of metapolicy values.

1.4 Frequently asked questions

The following notes answer common questions, and may be useful to you when installing, configuring or using django-
flashpolicies.

1.4.1 Why do I need a cross-domain policy file?

Much like JavaScript, the Adobe Flash player by default has a same-origin policy; a Flash player instance on one
domain cannot load data from another domain.

A cross-domain policy file allows you, as the owner of a domain, to specify exceptions to this, allowing loading of
data from another domain (for example, if you have data hosted on a CDN).

1.4. Frequently asked questions 7

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html#site-control
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html#site-control

django-flashpolicies Documentation, Release 1.6

In order to prevent security issues caused by loading data from untrusted domains, your cross-domain policy file should
permit only those domains you know are trustworthy (i.e., because those domains are under your control, and you can
prevent malicious content from being placed on them).

1.4.2 What versions of Django are supported?

As of django-flashpolicies 1.6, Django 1.7 and 1.8 are supported.

Older versions of Django may work, but are not supported. In particular, the behavior of the APPEND_SLASH setting
in some old Django versions may be problematic: on very old versions of Django, APPEND_SLASH always adds a
trailing slash even if the URL would match without it. This makes it impossible to serve a master policy file, which
must have exactly the URL /crossdomain.xml, with no trailing slash.

1.4.3 What versions of Python are supported?

On Django 1.7 or Django 1.8, django-flashpolicies 1.6 supports Python 2.7, 3.3 or 3.4.

1.4.4 Why are the elements in a different order each time I serialize my policy?

Internally, a Policy stores information about permitted domains and headers in dictionaries, keyed by domain names.
The resulting XML is generated by iterating over these dictionaries.

In older versions of Python, iteration over a dictionary would produce the same order of keys each time provided
the set of keys was identical. Newer versions of Python include a feature, for security purposes, known as hash
randomization; this means that two dictionaries with the same set of keys can and will at times iterate over those keys
in different orders.

Hash randomization is enabled by default on Python 3.3, and can be enabled on older releases. If you are seeing
inconsistent ordering for allow-access-from and allow-http-request-headers-from elements, it is
due to hash randomization being enabled.

Since this does not affect the well-formedness or validity of the resulting XML document, it is not a bug, and you
should not attempt to disable hash randomization in Python.

1.4.5 Why shouldn’t I use wild-card (i.e., ‘*’) domains in my policy?

Use of wild-card entries in a policy effectively negates much of the security gain that comes from explicitly specifying
the permitted domains. Unless you can and do vigilantly control all possible domains/subdomains matching a wild-
card entry, use of one will expose you to the possibility of loading malicious content.

1.4.6 How am I allowed to use this module?

django-flashpolicies is distributed under a three-clause BSD license. This is an open-source license which grants you
broad freedom to use, redistribute, modify and distribute modified versions of django-flashpolicies. For details, see
the file LICENSE in the source distribution of django-flashpolicies.

1.4.7 I found a bug or want to make an improvement!

The canonical development repository for django-flashpolicies is online at <https://github.com/ubernostrum/django-
flashpolicies>. Issues and pull requests can both be filed there.

8 Chapter 1. Documentation contents

http://opensource.org/licenses/BSD-3-Clause
https://github.com/ubernostrum/django-flashpolicies
https://github.com/ubernostrum/django-flashpolicies

django-flashpolicies Documentation, Release 1.6

See also:

• Overview of cross-domain policy files

• Policy file format specification

• Adobe’s recommendations for use of Flash cross-domain policies

1.4. Frequently asked questions 9

http://kb2.adobe.com/cps/142/tn_14213.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/flashplayer/articles/cross_domain_policy.html

django-flashpolicies Documentation, Release 1.6

10 Chapter 1. Documentation contents

Python Module Index

f
flashpolicies.policies, 5
flashpolicies.views, 4

11

django-flashpolicies Documentation, Release 1.6

12 Python Module Index

Index

A
allow_domain() (flashpolicies.policies.Policy method), 6
allow_headers() (flashpolicies.policies.Policy method), 6
allow_identity() (flashpolicies.policies.Policy method), 6

F
flashpolicies.policies (module), 5
flashpolicies.views (module), 4

M
metapolicy() (flashpolicies.policies.Policy method), 6
metapolicy() (in module flashpolicies.views), 4

N
no_access() (in module flashpolicies.views), 4

P
Policy (class in flashpolicies.policies), 5

S
serialize() (flashpolicies.policies.Policy method), 6
serve() (in module flashpolicies.views), 4
simple() (in module flashpolicies.views), 4
SITE_CONTROL_ALL (in module flashpoli-

cies.policies), 7
SITE_CONTROL_BY_CONTENT_TYPE (in module

flashpolicies.policies), 7
SITE_CONTROL_BY_FTP_FILENAME (in module

flashpolicies.policies), 7
SITE_CONTROL_MASTER_ONLY (in module flash-

policies.policies), 7
SITE_CONTROL_NONE (in module flashpoli-

cies.policies), 7

V
VALID_SITE_CONTROL (in module flashpoli-

cies.policies), 7

X
xml_dom (flashpolicies.policies.Policy attribute), 6

13

	Documentation contents
	Installation guide
	Views for serving cross-domain policies
	Utilities for generating cross-domain policy files
	Frequently asked questions

	Python Module Index

