

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-flashpolicies 1.4 documentation

django-flashpolicies 1.4

This application enables simple Flash cross-domain policies [http://kb2.adobe.com/cps/142/tn_14213.html] (which are required for
Flash content to access information across domains) for Django [http://www.djangoproject.com/]-powered sites. Cross-domain policies
are represented by an XML file format [http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html],
and this application generates and serves the appropriate XML.

In the simplest case, you’ll simply set up one URL pattern, pointing
the URL /crossdomain.xml to the view
flashpolicies.views.simple() and passing a list of domains from
which you want to allow access. For example, to allow access from
Flash content served from media.example.com, you could place the
following in the root URLconf of your Django site:

url(r'^crossdomain.xml$',
 'flashpolicies.views.simple',
 {'domains': ['media.example.com']}),

Documentation contents

	Installation guide

	Views for serving cross-domain policies

	Utilities for generating cross-domain policy files

See also

	Adobe’s recommendations for use of Flash cross-domain policies [http://www.adobe.com/devnet/flashplayer/articles/cross_domain_policy.html]

	Google doctype article on Flash cross-domain policies [http://code.google.com/p/doctype/wiki/ArticleFlashSecurityCrossDomain]

 Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-flashpolicies 1.4 documentation

Installation guide

Before installing django-flashpolicies, you’ll need to have a copy of
Django [http://www.djangoproject.com] already installed. Django 1.0
or later is required, and it’s generally recommended that you use the
latest stable release of Django. For information on obtaining and
installing Django, consult the Django download page [http://www.djangoproject.com/download/], which offers convenient
packaged downloads and installation instructions.

Note that older versions of Django may work as well, but are not
supported (and, due to the behavior of the APPEND_SLASH setting in
older Django releases, may not be able to serve cross-domain policies
from the proper URL).

Installing django-flashpolicies

There are several ways to install django-flashpolicies:

	Automatically, via a Python package installer.

	Manually, by downloading a copy of the release package and
installing it yourself.

	Manually, by performing a Mercurial checkout of the latest code.

It is also highly recommended that you learn to use virtualenv [http://pypi.python.org/pypi/virtualenv] for development and
deployment of Python software; virtualenv provides isolated Python
environments into which collections of software (e.g., a copy of
Django, and the necessary settings and applications for deploying a
site) can be installed, without conflicting with other installed
software. This makes installation, testing, management and deployment
far simpler than traditional site-wide installation of Python
packages.

Automatic installation via a package manager

Several automatic package-installation tools are available for Python;
the most popular are easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall] and pip [http://pip.openplans.org/]. Either can be used to install
django-flashpolicies.

Using easy_install, type:

easy_install django-flashpolicies

Using pip, type:

pip install django-flashpolicies

Manual installation from a downloaded package

If you prefer not to use an automated package installer, you can
download a copy of django-flashpolicies and install it manually. The
latest release package can be downloaded from django-flashpolicies’
listing on the Python Package Index [http://pypi.python.org/pypi/django-flashpolicies/].

Once you’ve downloaded the package, unpack it (on most operating
systems, simply double-click; alternately, type tar zxvf
django-flashpolicies-1.3.1.tar.gz at a command line on Linux, Mac OS
X or other Unix-like systems). This will create the directory
django-flashpolicies-1.3.1, which contains the setup.py
installation script. From a command line in that directory, type:

python setup.py install

Note that on some systems you may need to execute this with
administrative privileges (e.g., sudo python setup.py install).

Manual installation from a Mercurial checkout

If you’d like to try out the latest in-development code, you can
obtain it from the django-flashpolicies repository, which is hosted at
Bitbucket [http://bitbucket.org/] and uses Mercurial [http://www.selenic.com/mercurial/wiki/] for version control. To
obtain the latest code and documentation, type:

hg clone http://bitbucket.org/ubernostrum/django-flashpolicies/

This will create a copy of the django-flashpolicies Mercurial
repository on your computer; you can then the django-flashpolicies
directory inside the checkout your Python import path, or use the
setup.py script to perform a global installation from that code.

Basic configuration and use

Once installed, you can take advantage of django-flashpolicies on any
Django-based site you’re developing. Simply add flashpolicies to
your INSTALLED_APPS setting (django-flashpolicies provides no
models, so running manage.py syncdb is not required), and then
configure one or more appropriate URL patterns to serve your
cross-domain policy (or policies).

For most cases, you’ll simply need a single pattern, in your root
URLconf, pointing the URL /crossdomain.xml (the standard location
for a cross-domain policy) to the view
flashpolicies.views.simple(), passing a list of domains from
which you’d like to allow access. For example, to enable access for
Flash content served from the domains media.example.com and
api.example.com, the following URL pattern in your root URLconf
would suffice:

url(r'^crossdomain.xml$',
 'flashpolicies.views.simple',
 {'domains': ['media.example.com', 'api.example.com']}),

URL configuration and interaction with APPEND_SLASH

Your master policy file – the only policy file on your domain, in
most cases – must be served from exactly the URL
/crossdomain.xml. So if your site is at example.com, the
master policy file must be served from
http://example.com/crossdomain.xml.

As such, the Django instance in which django-flashpolicies is used
must be serving from the root of the domain. If this is not possible,
you will need to find an alternate method of serving your domain’s
cross-domain policy; one option is to manually create a
Policy instance, and serialize it
(via its xml_dom attribute),
writing the result to a file which can be handled normally by your web
server.

If you are using Django with the CommonMiddleware [http://docs.djangoproject.com/en/dev/ref/middleware/#module-django.middleware.common]
enabled and the APPEND_SLASH setting set to True (by default,
this is the case for any newly-created Django project), you will need
to be careful in defining the URL patterns used for serving
cross-domain policies. In particular, you’ll want to use the regular
expression ^crossdomain.xml$ – without trailing slash – for
the URL. Django’s CommonMiddleware (as of Django 1.0) will not
attempt to append a slash when an existing URL pattern matches without
the trailing slash.

Note that the current behavior of APPEND_SLASH was new in Django
1.0; previous releases of Django will always attempt to append a
slash, regardless of whether an existing pattern matches without
it. If you are using an older release of Django, this may pose
problems when attempting to serve a master policy file.

 Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-flashpolicies 1.4 documentation

Views for serving cross-domain policies

Included in django-flashpolicies are several views for generating and
serving Flash cross-domain policies; note, however, that several of
these views are for more advanced use cases and so generally are not
needed. Most sites will need no more than the
simple() policy-serving view.

	
flashpolicies.views.serve(request, policy)

	Given a flashpolicies.policies.Policy instance, serialize
it to XML and serve it. Internally, this is used by all other
included views as the mechanism which actually serves the policy
file.

	Parameters:	policy – The Policy to serve.

	
flashpolicies.views.simple(request, domains)

	A simple Flash cross-domain policy.

Note that if this is returned from the URL /crossdomain.xml on
a domain, it will act as a master policy and will not permit other
policies to exist on that domain. If you need to set metapolicy
information and allow other policies, use the
metapolicy() view for the master policy
instead.

	Parameters:	domains – A list of domains from which to allow access. Each
value may be either a domain name (e.g., example.com) or a
wildcard (e.g., *.example.com). Due to serious potential
security issues, it is strongly recommended that you not use
wildcard domain values.

	
flashpolicies.views.metapolicy(request, site_control, domains=None)

	A Flash cross-domain policy which allows other policies to exist on
the same domain.

Note that this view, if used, must be the master policy for the
domain, and so must be served from the URL /crossdomain.xml on
the domain: setting meta-policy information in other policy files
is forbidden by the cross-domain policy specification.

	Parameters:	
	permitted – A string indicating the extent to which other
policies are permitted. A set of constants is available,
defining acceptable values for this argument.

	domains – A list of domains from which to allow access. Each
value may be either a domain name (e.g., example.com) or a
wildcard (e.g., *.example.com). Due to serious potential
security issues, it is strongly recommended that you not use
wildcard domain values.

	
flashpolicies.views.no_access(request)

	A Flash cross-domain policy which permits no access of any kind,
via a metapolicy declaration disallowing all policy files.

Note that this view, if used, must be the master policy for the
domain, and so must be served from the URL /crossdomain.xml on
the domain: setting metapolicy information in other policy files is
forbidden by the cross-domain policy specification.

Internally, this view simply calls the metapolicy() view,
passing SITE_CONTROL_NONE as the
metapolicy.

 Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-flashpolicies 1.4 documentation

Utilities for generating cross-domain policy files

Internally, all policy files generated by django-flashpolicies are
represented by instances of flashpolicies.policies.Policy,
which understands how to handle the various permitted options in
policy files and can generate the correct XML. This documentation
covers Policy objects and their API, but is not and should
not be taken to be documentation on the format and options for
cross-domain policy files; Adobe’s cross-domain policy specification [http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html]
is the canonical source for that information.

Simple interaction with Policy objects

For most cases, simply instantiating a Policy object with one
or more domains will accomplish the desired effect. The property
xml_dom will yield an xml.dom.minidom.Document
object representing the policy’s XML; for information on working with
these objects, consult the documentation for the xml.dom.minidom
module in the Python standard library [http://docs.python.org/library/xml.dom.minidom.html]. In general,
however, calling str() with a Policy instance will be all
that’s required; this will serialize the XML to a UTF-8-encoded
bytestring, suitable for writing to a file or serving over HTTP.

For example:

>>> from flashpolicies import policies
>>> my_policy = policies.Policy('media.example.com', 'api.example.com')
>>> print str(my_policy)
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE cross-domain-policy
 SYSTEM 'http://www.adobe.com/xml/dtds/cross-domain-policy.dtd'>
<cross-domain-policy>
 <allow-access-from domain="media.example.com"/>
 <allow-access-from domain="api.example.com"/>
</cross-domain-policy>

API reference

	
class flashpolicies.policies.Policy

	Wrapper object for creating and manipulating a Flash cross-domain
policy.

In the simplest case – specifying one or more domains from which
to allow access – simply pass the domains to the constructor. For
example:

my_policy = Policy('media.example.com', 'api.example.com')

	
xml_dom

	A read-only property which returns an XML representation of this
policy, as an xml.dom.minidom.Document object.

	
allow_domain(domain, to_ports=None, secure=True)

	Allow access for Flash content served from a particular domain.

	Parameters:	
	domain – The domain from which to allow access. May be
either a full domain name (e.g., example.com) or a
wildcard (e.g., *.example.com). Due to serious potential
security concerns, it is strongly recommended that you avoid
wildcard domain values.

	to_ports – (only for socket policy files) A list of ports
the domain will be permitted to access. Each value in the
list may be either a port number (e.g., 80), a range of
ports (e.g., "80-120") or the wildcard value "*",
which will permit all ports.

	secure – If True, will require the security level of
the HTTP protocol for Flash content to match that of this
policy file; for example, if the policy file was retrieved
via HTTPS, Flash content from domain must also be
retrieved via HTTPS. If False, this matching of security
levels will be disabled. It is strongly recommended that you
not disable the matching of security levels.

	
allow_headers(domain, headers, secure=True)

	Allow Flash content from a particular domain to push data via
HTTP headers.

	Parameters:	
	domain – The domain from which to allow access. May be
either a full domain name (e.g., example.com) or a
wildcard (e.g., *.example.com). Due to serious potential
security concerns, it is strongly recommended that you avoid
wildcard domain values.

	headers – A list of HTTP header names in which data may be
submitted.

	secure – If True, will require the security level of
the HTTP protocol for Flash content to match that of this
policy file; for example, if the policy file was retrieved
via HTTPS, Flash content from domain must also be
retrieved via HTTPS. If False, this matching of security
levels will be disabled. It is strongly recommended that you
not disable the matching of security levels.

	
metapolicy(permitted)

	Set metapolicy information (only applicable to master policy
files), determining which other policy files may be used on the
same domain.

	Parameters:	permitted – The metapolicy to use. Acceptable values are
those listed in the cross-domain policy specification [http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html#site-control],
and are also available as a set of constants defined in
this module. Passing an invalid
value will raise TypeError.

By default, Flash assumes a default metapolicy of
master-only (except for socket policies, which assume a
default of all), so if this is the desired metapolicy (and,
for security reasons, it often is), this method does not need to
be called.

Note that a metapolicy of none forbids all access, even
if one or more domains have previously been specified as
allowed. As such, setting the metapolicy to none will remove
all access previously granted by allow_domain() or
allow_headers(). Additionally, attempting to grant access
via allow_domain() or allow_headers() will, when the
metapolicy is none, raise TypeError.

Available constants

For ease of working with metapolicies, the following constants are
defined, and correspond to the acceptable values for metapolicies as
defined in the cross-domain policy specification [http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html#site-control].

	
flashpolicies.policies.SITE_CONTROL_ALL

	All policy files available on the current domain are
permitted. Actual value is the string "all".

	
flashpolicies.policies.SITE_CONTROL_BY_CONTENT_TYPE

	Only policy files served from the current domain with an HTTP
Content-Type of text/x-cross-domain-policy are
permitted. Actual value is the string "by-content-type".

	
flashpolicies.policies.SITE_CONTROL_BY_FTP_FILENAME

	Only policy files served from the current domain as files named
crossdomain.xml are permitted. Actual value is the string
"by-ftp-filename".

	
flashpolicies.policies.SITE_CONTROL_MASTER_ONLY

	Only the master policy file for this domain – the policy served
from the URL /crossdomain.xml – is permitted. Actual value is
the string "master-only".

	
flashpolicies.policies.SITE_CONTROL_NONE

	No policy files are permitted, including the master policy
file. Actual value is the string "none".

	
flashpolicies.policies.VALID_SITE_CONTROL

	A tuple containing the above constants, for convenient validation
of metapolicy values.

 Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-flashpolicies 1.4 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flashpolicies	

 	
 	
 flashpolicies.policies	

 	
 	
 flashpolicies.views	

 Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-flashpolicies 1.4 documentation

Index

 A
 | F
 | M
 | N
 | P
 | S
 | V
 | X

A

 	

 	allow_domain() (flashpolicies.policies.Policy method)

 	

 	allow_headers() (flashpolicies.policies.Policy method)

F

 	

 	flashpolicies.policies (module)

 	

 	flashpolicies.views (module)

M

 	

 	metapolicy() (flashpolicies.policies.Policy method)

 	

 	(in module flashpolicies.views)

N

 	

 	no_access() (in module flashpolicies.views)

P

 	

 	Policy (class in flashpolicies.policies)

S

 	

 	serve() (in module flashpolicies.views)

 	simple() (in module flashpolicies.views)

 	SITE_CONTROL_ALL (in module flashpolicies.policies)

 	SITE_CONTROL_BY_CONTENT_TYPE (in module flashpolicies.policies)

 	

 	SITE_CONTROL_BY_FTP_FILENAME (in module flashpolicies.policies)

 	SITE_CONTROL_MASTER_ONLY (in module flashpolicies.policies)

 	SITE_CONTROL_NONE (in module flashpolicies.policies)

V

 	

 	VALID_SITE_CONTROL (in module flashpolicies.policies)

X

 	

 	xml_dom (flashpolicies.policies.Policy attribute)

 Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/plus.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-flashpolicies 1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009, James Bennett.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

