
django-flashpolicies Documentation
Release 1.12

James Bennett

Feb 17, 2020

Contents

1 Documentation contents 3

Python Module Index 11

Index 13

i

ii

django-flashpolicies Documentation, Release 1.12

This application provides management of Flash cross-domain policies (which are required for Flash content to access
information across domains) for Django-powered sites. Cross-domain policies are represented by an XML file format,
and this application generates and serves the appropriate XML.

In many cases, the same policy file will also be understood by Microsoft’s Silverlight browser plugin, which supports
the Adobe Flash format as a fallback in the absence of a file in its own native cross-domain policy format.

In the most common case, you’ll set up one URL pattern, pointing the URL /crossdomain.xml to the view
flashpolicies.views.allow_domains() and passing a list of domains from which you want to allow ac-
cess. For example, to allow access from Flash content served from media.example.com, you could place the following
in the root URLconf of your Django site:

from django.urls import path

from flashpolicies.views import allow_domains

urlpatterns = [
...your other URL patterns here...
path(

'crossdomain.xml',
allow_domains,
{'domains': ['media.example.com']}

),
]

Contents 1

https://www.djangoproject.com/

django-flashpolicies Documentation, Release 1.12

2 Contents

CHAPTER 1

Documentation contents

1.1 Installation guide

The 1.12 release of django-flashpolicies supports Django 2.2 and 3.0 on the following Python versions:

• Django 2.2 supports Python 3.5, 3.6, 3.7, and 3.8.

• Django 3.0 supports Python 3.6, 3.7, and 3.8.

1.1.1 Normal installation

The preferred method of installing django-flashpolicies is via pip, the standard Python package-installation tool. If you
don’t have pip, instructions are available for how to obtain and install it, though if you’re using a supported version of
Python, pip should have come bundled with your installation of Python.

Once you have pip, type:

pip install django-flashpolicies

If you don’t have a copy of a compatible version of Django, this will also automatically install one for you, and will
install a third-party library required by some of django-flashpolicies’s validation code.

1.1.2 Installing from a source checkout

If you want to work on django-flashpolicies, you can obtain a source checkout.

The development repository for django-flashpolicies is at <https://github.com/ubernostrum/django-flashpolicies>. If
you have git installed, you can obtain a copy of the repository by typing:

git clone https://github.com/ubernostrum/django-flashpolicies.git

From there, you can use git commands to check out the specific revision you want, and perform an “editable” install
(allowing you to change code as you work on it) by typing:

3

https://pip.pypa.io/en/latest/installing.html
https://github.com/ubernostrum/django-flashpolicies
http://git-scm.com/

django-flashpolicies Documentation, Release 1.12

pip install -e .

1.1.3 Next steps

To get up and running quickly, check out the views documentation.

1.2 Views for serving cross-domain policies

Included in django-flashpolicies are several views for generating and serving Flash cross-domain policies. Most sites
will need no more than the allow_domains() policy-serving view.

Some of the other views here support more advanced use cases, but note that not all valid policy file options have
direct support in these views. The Policy class does support all valid options, however, so instantiating a Policy ,
setting the desired options, and passing it to the serve() view will allow use of any options policy files can support.

flashpolicies.views.serve(request, policy)
Given a Policy instance, serializes it to UTF-8 and serves it.

Internally, this is used by all other included views as the mechanism which actually serves the policy file.

Parameters

• request (django.http.HttpRequest) – The incoming HTTP request.

• policy (flashpolicies.policies.Policy) – The policy to serve.

Return type django.http.HttpResponse

flashpolicies.views.allow_domains(request, domains)
Serves a cross-domain access policy allowing a list of domains.

Note that if this is returned from the URL /crossdomain.xml on a domain, it will act as a master policy and will
not permit other policies to exist on that domain. If you need to set meta-policy information and allow other
policies, use the metapolicy() view for the master policy instead.

Parameters

• request (django.http.HttpRequest) – The incoming HTTP request.

• domains (typing.Iterable) – The domains from which to allow access. Each value
may be either a domain name (e.g., “example.com”) or a wildcard (e.g., “*.example.com”).
Due to serious potential security issues, it is strongly recommended that you not use wild-
card domain values.

Return type django.http.HttpResponse

flashpolicies.views.metapolicy(request, permitted, domains=None)
Serves a cross-domain policy which can allow other policies to exist on the same domain.

Note that this view, if used, must be the master policy for the domain, and so must be served from the URL
/crossdomain.xml on the domain: setting meta-policy information in other policy files is forbidden by the cross-
domain policy specification.

Parameters

• request (django.http.HttpRequest) – The incoming HTTP request.

4 Chapter 1. Documentation contents

https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest

django-flashpolicies Documentation, Release 1.12

• permitted (str) – The metapolicy value to use. A set of constants is available, defining
acceptable values for this argument.

• domains (typing.Iterable) – The domains from which to allow access. Each value
may be either a domain name (e.g., “example.com”) or a wildcard (e.g., “*.example.com”).
Due to serious potential security issues, it is strongly recommended that you not use wild-
card domain values.

Return type django.http.HttpResponse

flashpolicies.views.no_access(request)
Serves a cross-domain policy which permits no access of any kind, via a meta-policy declaration disallowing all
policy files.

Note that this view, if used, must be the master policy for the domain, and so must be served from the URL
/crossdomain.xml on the domain. Setting meta-policy information in other policy files is forbidden by the cross-
domain policy specification.

Internally, this view calls the metapolicy() view, passing SITE_CONTROL_NONE as the meta-policy.

Parameters request (django.http.HttpRequest) – The incoming HTTP request.

Return type django.http.HttpResponse

1.3 Utilities for generating cross-domain policy files

Internally, all policy files generated by django-flashpolicies are represented by instances of flashpolicies.
policies.Policy , which understands how to handle the various permitted options in policy files and can generate
the correct XML. This documentation covers Policy objects and their API, but is not and should not be taken to be
documentation on the format and options for cross-domain policy files; Adobe’s cross-domain policy specification is
the canonical source for that information.

1.3.1 Interaction with Policy objects

For most cases, instantiating a Policy object with one or more domains will accomplish the desired effect. The
property xml_dom will yield a Document object representing the policy’s XML; for information on working with
these objects, consult the documentation for the xml.dom.minidom module in the Python standard library.

1.3.2 Serializing Policy objects

There are two similar but different ways to serialize the underlying XML. One is to use str() on a Policy instance,
like so:

>>> from flashpolicies import policies
>>> my_policy = policies.Policy('media.example.com', 'api.example.com')
>>> print(str(my_policy))
<?xml version="1.0" ?>
<!DOCTYPE cross-domain-policy

SYSTEM 'http://www.adobe.com/xml/dtds/cross-domain-policy.dtd'>
<cross-domain-policy>

<allow-access-from domain="media.example.com"/>
<allow-access-from domain="api.example.com"/>

</cross-domain-policy>

The other is to call the serialize() method. The difference between these options is:

1.3. Utilities for generating cross-domain policy files 5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpResponse
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://docs.python.org/library/xml.dom.minidom.html

django-flashpolicies Documentation, Release 1.12

1. str() will, as is required by Python’s semantics, produce a result of type str, which is a Unicode string; this
means the output is not in any particular encoding, and will omit the encoding declaration of the XML prolog.

2. serialize() will, on the other hand, always return a UTF-8-encoded bytes object, so the output of
serialize() will include an encoding declaration in its XML prolog.

In general, str() should be used to inspect a Policy for debugging or educational purposes, while serialize()
should be used any time the output will actually be treated as a policy file (i.e., if writing your own policy-serving
view, or if serializing the policy to a file). The built-in serve() view uses serialize().

1.3.3 API reference

class flashpolicies.policies.Policy
Wrapper object for creating and manipulating a Flash cross-domain policy.

In the most common case – specifying one or more domains from which to allow access – pass the domains
when initializing. For example:

my_policy = Policy('media.example.com', 'api.example.com')

xml_dom
A read-only property which returns an XML representation of this policy, as an xml.dom.minidom.
Document object.

serialize()
Serialize this policy to UTF-8-encoded bytes suitable for serving over HTTP or writing to a file.

Return type bytes

allow_domain(domain, to_ports=None, secure=True)
Allows access for Flash content served from a particular domain.

Parameters

• domain (str) – The domain from which to allow access. May be either a full domain
name (e.g., “example.com”) or a wildcard (e.g., “example.com”). Due to serious potential
security concerns, it is strongly recommended that you avoid wildcard domain values.

• to_ports (typing.Iterable) – (only for socket policy files) The ports (as str) the
domain will be permitted to access. Each port may be either a port number (e.g., “80”), a
range of ports (e.g., “80-120”) or the wildcard value “*”, which will permit all ports.

• secure (bool) – If True, will require the security level of the HTTP protocol for Flash
content to match that of this policy file; for example, if the policy file was retrieved via
HTTPS, Flash content from domain must also be retrieved via HTTPS. If False, this
matching of security levels will be disabled. It is strongly recommended that you not
disable the matching of security levels.

Return type None

Raises TypeError – if the current metapolicy is SITE_CONTROL_NONE. See
metapolicy() for details.

allow_headers(domain, headers, secure=True)
Allows Flash content from a particular domain to push data via HTTP headers.

Parameters

• domain (str) – The domain from which to allow access. May be either a full domain
name (e.g., “example.com”) or a wildcard (e.g., “*.example.com”). Due to serious poten-
tial security concerns, it is strongly recommended that you avoid wildcard domain values.

6 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

django-flashpolicies Documentation, Release 1.12

• headers (typing.Iterable) – The HTTP header names (as str) in which data
may be submitted.

• secure (bool) – If True, will require the security level of the HTTP protocol for Flash
content to match that of this policy file; for example, if the policy file was retrieved via
HTTPS, Flash content from domain must also be retrieved via HTTPS. If False, this
matching of security levels will be disabled. It is strongly recommended that you not
disable the matching of security levels.

Return type None

Raises TypeError – if the current metapolicy is SITE_CONTROL_NONE. See
metapolicy() for details.

allow_identity(fingerprint)
Allows access from digitally-signed documents.

The XML resulting from use of this method will include both the key fingerprint and the name of an
algorithm used to calculate the fingerprint. At the moment, “sha-1” is the only value defined in the cross-
domain policy specification for the fingerprint-algorithm attribute of the certificate element (which is the
element produced by this method), and so an argument for this is omitted; if additional algorithms are
added to the specification, support will be added in a backwards-compatible fashion (likely through an
argument defaulting to SHA-1).

Parameters fingerprint (str) – The fingerprint of the signing key to allow.

Return type None

Raises TypeError – if the current metapolicy is SITE_CONTROL_NONE. See
metapolicy() for details.

metapolicy(permitted)
Sets metapolicy information (only applicable to master policy files), determining which other policy files
may be used on the same domain.

By default, Flash assumes a default metapolicy of “master-only” (except for socket policies, which assume
a default of “all”), so if this is the desired metapolicy (and, for security reasons, it often is), this method
does not need to be called.

Note that a metapolicy of “none” forbids all access, even if one or more domains, headers or identities have
previously been specified as allowed. As such, setting the metapolicy to “none” will remove all access pre-
viously granted by allow_domain(), allow_headers() or allow_identity(). Additionally,
attempting to grant access via allow_domain(), allow_headers() or allow_identity()
will, when the metapolicy is “none”, raise TypeError.

Parameters permitted (str) – The metapolicy to use. Acceptable values are those listed in
the cross-domain policy specification, and are also available as a set of constants defined in
this module.

Return type None

Raises TypeError – when permitted is not one of the accceptable metapolicy values from the
Adobe cross-domain policy specification.

1.3.4 Available constants

For ease of working with metapolicies, the following constants are defined, and correspond to the acceptable values
for metapolicies as defined in the cross-domain policy specification.

flashpolicies.policies.SITE_CONTROL_ALL
All policy files available on the current domain are permitted. Actual value is the string “all”.

1.3. Utilities for generating cross-domain policy files 7

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html#site-control
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html#site-control

django-flashpolicies Documentation, Release 1.12

flashpolicies.policies.SITE_CONTROL_BY_CONTENT_TYPE
Only policy files served from the current domain with an HTTP Content-Type of “text/x-cross-domain-policy”
are permitted. Actual value is the string “by-content-type”.

flashpolicies.policies.SITE_CONTROL_BY_FTP_FILENAME
Only policy files served from the current domain as files named crossdomain.xml are permitted. Actual value is
the string “by-ftp-filename”.

flashpolicies.policies.SITE_CONTROL_MASTER_ONLY
Only the master policy file for this domain – the policy served from the URL /crossdomain.xml – is permitted.
Actual value is the string “master-only”.

flashpolicies.policies.SITE_CONTROL_NONE
No policy files are permitted, including the master policy file. Actual value is the string “none”.

flashpolicies.policies.VALID_SITE_CONTROL
A tuple containing the above constants, for convenient validation of metapolicy values.

1.4 Feature and API deprecation cycle

The following features or APIs of django-flashpolicies are deprecated and scheduled to be removed in future releases.
Please make a note of this and update or plan your use of django-flashpolicies accordingly. When possible, deprecated
features will emit a DeprecationWarning as an additional warning of pending removal.

1.4.1 The flashpolicies.views.simple view

Will be removed in: django-flashpolicies 2.0

This view has been renamed to allow_domains() to better communicate its purpose. The view flashpoli-
cies.views.simple continues to exist for now as an alias for backwards compatibility, but will be removed (and emits a
DeprecationWarning).

1.4.2 The flashpolicies package name

Will be removed in: django-flashpolicies 2.0

Currently, django-flashpolicies installs a Python module named flashpolicies. For the 2.0 release, this will change to
django_flashpolicies.

1.5 Frequently asked questions

The following notes answer common questions, and may be useful to you when installing, configuring or using django-
flashpolicies.

1.5.1 Why do I need a cross-domain policy file?

Much like JavaScript, the Adobe Flash player by default has a same-origin policy; a Flash player instance on one
domain cannot load data from another domain.

A cross-domain policy file allows you, as the owner of a domain, to specify exceptions to this, allowing loading of
data from another domain (for example, if you have data hosted on a CDN).

8 Chapter 1. Documentation contents

https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#DeprecationWarning

django-flashpolicies Documentation, Release 1.12

In order to prevent security issues caused by loading data from untrusted domains, your cross-domain policy file should
permit only those domains you know are trustworthy (i.e., because those domains are under your control, and you can
prevent malicious content from being placed on them).

1.5.2 Why doesn’t this application generate Silverlight’s format?

The Microsoft Silverlight plugin has a same-origin sandbox like Flash, and its native format for cross-domain poli-
cies is a file called clientaccesspolicy.xml. However, if clientaccesspolicy.xml is not found on the target domain, or
otherwise returns an error, Silverlight will fall back to requesting and obeying a Flash crossdomain.xml file.

This means that a single file – crossdomain.xml in the Flash format – suffices for both Flash and Silverlight. Addi-
tionally, Silverlight is no longer supported in current versions of Microsoft’s own Edge browser, support for it is in the
process of being dropped/disabled in other major browsers, and Microsoft has announced that Silverlight will reach
end-of-life in 2021, meaning that the Silverlight-only format corresponds to an already-small and shrinking, and soon
to be nonexistent, supported base.

1.5.3 Why are the elements in a different order each time I serialize my policy?

Internally, a Policy stores information about permitted domains and headers in dictionaries, keyed by domain names.
The resulting XML is generated by iterating over these dictionaries.

The order of keys emitted when iterating over a dictionary is something which has changed multiple times in different
versions of Python. If you see inconsistent order, this is not a bug; it just indicates the dictionary-iterating behavior
of the version of Python you’re using. This also does not affect the well-formedness or validity of the resulting XML
document.

1.5.4 Why shouldn’t I use wild-card (‘*’) domains in my policy?

Use of wild-card entries in a policy effectively negates much of the security gain that comes from explicitly specifying
the permitted domains. Unless you can and do vigilantly control all possible domains/subdomains matching a wild-
card entry, use of one will expose you to the possibility of loading malicious content.

1.5.5 How am I allowed to use this library?

django-flashpolicies is distributed under a three-clause BSD license. This is an open-source license which grants you
broad freedom to use, redistribute, modify and distribute modified versions of django-flashpolicies. For details, see
the file LICENSE in the source distribution of django-flashpolicies.

1.5.6 What versions of Django and Python are supported?

As of django-flashpolicies 1.12, Django 2.2 and 3.0 are supported, on Python 3.5 (Django 2.2 only), 3.6, 3.7, and 3.8.

1.5.7 I found a bug or want to make an improvement!

The canonical development repository for django-flashpolicies is online at <https://github.com/ubernostrum/
django-flashpolicies>. Issues and pull requests can both be filed there.

See also:

• Overview of cross-domain policy files

1.5. Frequently asked questions 9

http://opensource.org/licenses/BSD-3-Clause
https://github.com/ubernostrum/django-flashpolicies
https://github.com/ubernostrum/django-flashpolicies
http://kb2.adobe.com/cps/142/tn_14213.html

django-flashpolicies Documentation, Release 1.12

• Policy file format specification

• Adobe’s recommendations for use of Flash cross-domain policies

• Microsoft’s documentation on support in Silverlight for cross-domain requests

10 Chapter 1. Documentation contents

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/flashplayer/articles/cross_domain_policy.html
https://msdn.microsoft.com/en-us/library/cc645032(v=vs.95).aspx

Python Module Index

f
flashpolicies.policies, 5
flashpolicies.views, 4

11

django-flashpolicies Documentation, Release 1.12

12 Python Module Index

Index

A
allow_domain() (flashpolicies.policies.Policy

method), 6
allow_domains() (in module flashpolicies.views), 4
allow_headers() (flashpolicies.policies.Policy

method), 6
allow_identity() (flashpolicies.policies.Policy

method), 7

F
flashpolicies.policies (module), 5
flashpolicies.views (module), 4

M
metapolicy() (flashpolicies.policies.Policy method),

7
metapolicy() (in module flashpolicies.views), 4

N
no_access() (in module flashpolicies.views), 5

P
Policy (class in flashpolicies.policies), 6

S
serialize() (flashpolicies.policies.Policy method), 6
serve() (in module flashpolicies.views), 4
SITE_CONTROL_ALL (in module flashpoli-

cies.policies), 7
SITE_CONTROL_BY_CONTENT_TYPE (in module

flashpolicies.policies), 8
SITE_CONTROL_BY_FTP_FILENAME (in module

flashpolicies.policies), 8
SITE_CONTROL_MASTER_ONLY (in module flashpoli-

cies.policies), 8
SITE_CONTROL_NONE (in module flashpoli-

cies.policies), 8

V
VALID_SITE_CONTROL (in module flashpoli-

cies.policies), 8

X
xml_dom (flashpolicies.policies.Policy attribute), 6

13

	Documentation contents
	Python Module Index
	Index

